PhD Thesis Defenses

On Monday July 29th 2024 at 9.30am at the classroom Giuseppe Perrotta, Via Santa Sofia 100

Ermes Ivan Rovetto (XXXVI cycle)

Will defend his PhD theses titled

European Doctor Candidate

Green solutions and innovative technologies for post-harvest management and safety of food products of the organic and zero-residue citrus production chain

Thesis Abstract

Mediterranean countries, including Spain and Italy, dominate the global fresh citrus fruit trade. The citrus industry in EU Mediterranean countries prioritizes high-quality products like blood oranges, with a focus on consumer health. However, fungal diseases, particularly green mold caused by *Penicillium digitatum*, present significant challenges, resulting in substantial post-harvest losses. Some disease-causing agents are categorized as quarantine or recommended as regulated non-quarantine pests (RNQPs) by the European and Mediterranean Plant Protection Organization (EPPO). Various fungi contribute to post-harvest decay, with some producing mycotoxins that can contaminate fruit or juices. The objectives of this doctoral thesis were as follows: i. Characterize the mycotoxins produced by *Alternaria alternata*, *Colletotrichum gloeosporioides*, and *Penicillium digitatum* in blood orange fruit. ii. Establish a rapid and reliable molecular diagnostic method for in situ detection of the anamorphic fungus *Plenodomus tracheiphilus*, the causal agent of Mal secco disease (MSD) of lemons. iii. Evaluate the effectiveness of *Candida oleophila* as a sustainable alternative to commercial fungicides for post-harvest fruit treatments to prevent green mold incited by *P. digitatum*.

Regarding the first objective, mycotoxins and secondary metabolites produced by *A. alternata, C. gloeosporioides*, and *P. digitatum* in blood orange fruit were analyzed using UHPLC–Q-TOF-MS. Three types of fruit were selected per cultivar: asymptomatic, symptomatic showing necrotic lesions caused by hail, and mummified. Among 47 secondary metabolites identified, 16, 18, and 13 were of *A. alternata, C. gloeosporioides*, and *P. digitatum*, respectively. The metabolic profiles of the peel were similar between hail-damaged and asymptomatic fruit, while the juice of the mummified fruit showed significantly higher levels of specific compounds and mycotoxins (patulin and Rubratoxin B), associated exclusively with the presence of *P. digitatum*.

Consistently with the second objective, a novel diagnostic assay utilizing recombinase polymerase amplification (RPA) technology was developed for detecting *P. tracheiphilus*. RPA assay achieved sensitivity comparable to that of the Real Time-PCR test and even more sensitive in tests on DNA samples obtained through a rapid extraction method, highlighting the potential of RPA in citrus disease management.

Regarding the third objective, the study focused on assessing the effectiveness of the biological control agent *C. oleophila* in managing green mold induced by *P. digitatum* in different stages of the post-harvest supply chain. Results revealed that *C. oleophila* demonstrated notable effectiveness in decreasing the incidence of green mold symptoms. Furthermore, the research has provided insights into the molecular mechanisms of citrus fruit's defensive response to *C. oleophila* treatment.

Tutor: Santa Olga Cacciola

Co-Tutors: Prof. Antonella Pane and Prof. Andrea Baglieri